Open Access Case study

Innovative and Sustainable Materials in Architectural Engineering

Hend Elzefzafy

Journal of Engineering Research and Reports, Page 38-46
DOI: 10.9734/jerr/2021/v21i817486

The advantages of fiber-reinforced polymer (FRP) composite material have attracted architectural engineers as alternative construction materials. FRP materials are noncorrosive, lightweight, exhibit high tensile strength, and stiffness, are easily fabricated and constructed. For architectural applications, FRP materials are fabricated using a polymer matrix, such as epoxy, vinyl ester, or polyester, and reinforced with various grades of carbon, glass, and/or aramid fibers. In this study, FRP coupons have been tested under axial tensile load to evaluate the strength of these materials for architectural application. Coupon specimens were cut from two different types of glass-FRP (GFRP) tubes namely: Type I and II, the two types had constant internal diameter equal to 152 mm. The GFRP tubes Type I consist of six layers with (±60°) fibers angles oriented mainly in the hoop direction with respect to the longitudinal axis of the tubes, the total thickness is 2.65 mm. While GFRP tubes I consist of fourteen layers with different fibers angles (±65, ±45, ±65) and the total thickness are 6.4 mm. The test results were presented and discussed. The strength of the coupon showed an acceptable level to be used for architectural application. Some of the FRP composites successful applications are briefly presented and discussed to provide the appropriate background for the application of FRP composites in architectural engineering. The promising results presented for the GFRP materials represent a further step toward architectural application.

Open Access Commentary

Research Status and Development Trend of Magnetic Fluid Acceleration Sensors

Mu Xueyu, Yang Shaojie, Kong Xiangdong

Journal of Engineering Research and Reports, Page 10-15
DOI: 10.9734/jerr/2021/v21i817483

As a new type of accelerometer, in recent years, the magnetic liquid acceleration sensor has attracted widespread attention worldwide, and related research results have also continued to emerge. This article mainly introduces the theoretical basis and general structure of the magnetic liquid acceleration sensor, and according to the difference of inertial mass, briefly describes the research progress of the magnetic liquid acceleration sensor by national and foreign scholars in recent years and some in existing problems. Finally, suggestions and prospects for the future development trend of the magnetic liquid acceleration sensor are given.

Open Access Original Research Article

Effect of Calcination on the Chemical and Microstructural Properties of Sugarcane Bagasse Ash (SCBA)

Afaq Ahmad, Khalil UR Rehman, Fawad Ahmad, Ansar Ahmad, Muhammad Armaghan Siffat

Journal of Engineering Research and Reports, Page 1-9
DOI: 10.9734/jerr/2021/v21i817482

This research study is for the evaluation of the effect of the burning temperature on the chemical and microstructural properties of Sugarcane Bagasse Ash. The Sugarcane Bagasse Ash (SCBA) is a byproduct of sugarcane which is dumped without proper handling and causing  environmental  issues  because  of  the burning on dump site and loss of the area due to dumping in the commodity. The current research study is conducted for burning of SCBA on different temperatures  and  duration  for  finding the optimum burning temperature and duration of burning. The chemical and microstructural properties of SCBA evaluated at burning temperatures of 800°C for the duration of 01 hour, at temperature of 600° for the duration of 03 and 06 hours by conducting the tests of FTIR, XRD and XRF on the samples. The test results show that the burning temperatures of 800°C for the duration of 1 hour contains amorphous silica and also fulfilling the requirement of pozzolanic material (Composition of Silica, alumina and iron oxide is greater than 70%) as compared to other ash samples of sugarcane bagasse.

Open Access Original Research Article

Modelling of Soil Profile Pollutant Yield on Slaughterhouse Wastes Deposited Land

Ogbebor Daniel, Ugbebor N. John, Momoh O. L. Yusuf, Ndekwu B. Onyedikachukwu

Journal of Engineering Research and Reports, Page 16-29
DOI: 10.9734/jerr/2021/v21i817484

Aim: The study aimed at modeling the concentration of pollutants along soil profile using finite element method.

Study Design: Data was generated from the laboratory on the concentrations of selected heavy metals at varying depths of land discharged slaughterhouses. This was used to estimate the level of nutrient build-up in the soil within these environs, hence, used to verify and validate the finite element analysis. The model upon validation was used to predict the rate of pollutant build-up in the soil within the slaughterhouses discharge areas.

Methodology: A total of twelve composite samples were collected from three different land discharged locations. The three composite samples each were collected from the sampling locations at a depth of 0 to 10cm, 10 to 20cm, 20 to 30cm and 30 to 40cm. Four composite samples each were collected for analysis from the three sampling locations on specified sampling dates. The samples were then placed in sterile polythene bags and transported to the laboratory for processing. The laboratory results obtained for heavy metals were used for the generated model verification and validation, hence predictions for pollutants accumulation was done on a time step.

Results: Model verification showed a good fit of a nonlinear polynomial curve for both the measured and predicted values with R² values of 0.9978 to 0.9985 for zinc and 0.9978 to 0.9984 for lead at a selected time step of 15years. It was observed however, that there was an increasing tendency to uniformity of concentration as the time step increased; this was due to parameters build-up with time in the soil.

Conclusion: Finite element results revealed a high build-up in the concentration of pollutants (Zinc and Lead) in the land discharged slaughterhouses.

Open Access Original Research Article

Use of the Correlation Coefficient for Rotating Machine Monitoring

Aimé Joseph Oyobé Okassa, Colince Welba, Jean Pierre Ngantcha, Pierre Ele

Journal of Engineering Research and Reports, Page 30-37
DOI: 10.9734/jerr/2021/v21i817485

The use of electronics and computer technology in production systems has greatly improved the quality of our industrial products. The productivity of these installations is a function of the maintenance quality applied to the equipment. Several methods are used to monitor the functioning of industrial installations. One of these methods is vibration analysis. The vibration signals from the rotating machines support several types of information related to the working state of the production tool. The processing of this information makes it possible to have decision tools for maintenance. In this work, we propose a method of anticipating the maintenance of rotating machines. The algorithm we propose starts with the removal of 512 point windows during the running time of the ball bearing. Each signal is decomposed by DWT: we obtain the approximation coefficients. These coefficients make it possible to determine the correlation coefficient between the so-called reference window and the other windows following the functioning of the ball bearing. The correlation coefficient is then the fundamental element of the decision. This algorithm has been applied to real vibration data and the results are encouraging.