Overvıew of Bıoleachıng

Mabel Keke *

Department of Chemical Engineering, Delta State University of Science and Technology, Ozoro, Nigeria.

Ikechukwu A. Nnanwube

Department of Chemical Engineering, Madonna University, Akpugo, Nigeria.

Okechukwu D. Onukwuli

Department of Chemical Engineering, Nnamdi Azikiwe University, Awka, Nigeria.

*Author to whom correspondence should be addressed.


Abstract

Aims: This study aims to present a comprehensive analysis of bioleaching, the fundamental idea behind it, the emergence of microbes and the bioleaching approaches.

Study Design: To do this, this research has been developed on a foundation of significant topics. The researcher used a quantitative approach in this particular investigation. The quantitative study is presented in tables that list the bioleaching processes and efficient microorganisms.

Place and Duration of Study: This study was carried out in Chemical Engineering department, Delta State University of Science and Technology, Ozoro, Nigeria.

Methodology: The researcher decided on a combination methodology because of the context of the present investigation. The approach of data collection and analysis employing qualitative as well as quantitative methodologies is known as combined research design.

Results: The lengthy training period of microorganisms at the laboratory scale, which is significantly impacted by other experimental variables, is one of the key difficulties faced by the bioleaching process. Therefore, the key to increasing the simplicity of bioleaching technologies in large-scale industrial production is to enhance the bioleaching microorganism’s currently in use so that they can continue to be highly active under more complicated reaction conditions. Regarding the microbial problem, biological leaching piles of just a few genes in the offspring of acidophilic microorganisms have been documented. Although some bacterial genomes from acid mine drainage and acidic environments have been used to create replacements, these models cannot fully depict the potential for leaching; in addition, it can be difficult for researchers to obtain samples of microbes from actual production, making further research challenging.

Conclusion: In the years to come, microbial use for waste treatment and mineral processing will continue to gain importance on a global scale. The need to process ores with trace amounts of copper and gold, the potential for recycling waste spoils and tailings, financial limitations, and potential legislative changes on the environmental impact of more conventional approaches like hydrometallurgy will all contribute to this. The employment of chemolithotrophic and heterotrophic bacteria will be a significant addition, boosting the leaching rates and metal recoveries and enabling the treatment of resistant ores like chalcopyrite.

Keywords: Bioleaching, acidithiobacillus ferrooxidans, thiobacillus ferrooxidans, heterotrophic microorganisms, metal sulphide


How to Cite

Keke , M., Nnanwube , I. A., & Onukwuli , O. D. (2023). Overvıew of Bıoleachıng. Journal of Engineering Research and Reports, 25(2), 108–129. https://doi.org/10.9734/jerr/2023/v25i2884

Downloads

Download data is not yet available.

References

Krebs W, Brombacher C, Bosshard PP, Bachofen R, Brandl H. Microbial recovery of metals from solids. FEMS Microbiology Reviews 1997;(20):605-17. Avaialble:https://doi.org/0.1016/S0168-6445(97)00037-5

Gentina JC, Acevedo F. Microbial ore leaching in developing countries. Trends Biotechnol. 1985;30:86-9.

Avaialble:https://doi.org/10.1016/0167-7799(85)90087-3

Bosecker K. Bioleaching: Metal solubilisation by microorganisms. FEMS Microbiol. Rev. 1997;(20):591-604.

Avaialble:https://doi.org/10.1111/j.1574-6976.1997.tb00340.x

Langley S, Beveridge TJ. Effect of O-side chain lipopolysaccharide chemistry on metal binding. Applied and Environmental Microbiology 1997;65(2):489-98. Avaialble:https://dx.doi.org/10.1128%2Faem.65.2.489-498.1999

Banfield JF, Hamers RJ. Processes at minerals and surfaces with relevance to microorganisms and prebiotic synthesis. Rev. Mineral. Geochem. 1997;(35):81-122. Avaialble:https://doi.org/10.1515/9781501509247-005

Barker WW, Welch SA, Banfield JF. Geo-microbiology of silicate mineral weathering. In geo-microbiology: Interactions between microbes and minerals, Banfield, J.F. and Nealson, K.H., (Eds.). Mineralogical society of America, Washington, DC; 1997; 391-428. ISBN-10: 0939950456.

Bennett PC, Rogers JR, Choi WJ, Hiebert FK. Silicates, weathering and microbial ecology. Geomicrobiol. J. 2001;(18):3-19. Avaialble:https://doi.org/10.1080/014904501510797348

Fortin D, Ferris FG, Beveridge TJ. Surface-mediated mineral development by bacteria. Rev. Mineral. Geochem. 1997;35(1):161-180.

Bayat B, Sari B. Bioleaching of dewatered metal plating sludge by Acidithiobacillus ferrooxidans using shake flask and completely mixed batch reactor. African Journal of Biotechnology. 2010;9(44): 7504-12.

Avaialble:https://doi.org/10.5897/AJB10.1142

Valix M. Bioleaching of electronic waste: Milestones and challenges in current developments in biotechnology and bioengineering. Elsevier B.V. 2017;407-442. Avaialble:https://doi.org/10.1016/B978-0-444-63664-5.00018-6

Rawlings DE. Heavy metal mining using microbes. Annual review of microbiology. 2002;65- 91.

Avaialble:http://dx.doi.org/10.1146/annurev.micro.56.012302.161052

Dave SR, Sodha AB, Tipre DR. Microbial Technology for Metal Recovery from E-Waste Printed Circuit Boards. Journal of bacteriology and mycology 2018; 6(4): 241- 247. Avaialble:https://doi.org/10.15406/jbmoa.2018.06.00212

Natarajan KA. Methods in bio-hydrometallurgy and developments: Dump, Heap, in Situ, and Stirred Tank Bioreactor. 2018;81-106.

Mishra D, Kim DJ, Ahn JG, Rhee YH. Bioleaching: A microbial process of metal recovery. Metals and Materials International 2005;11(3):249-56. Avaialble:https://doi.org/10.1007/BF03027450

Kasper AC, Gabriel AP, de Oliveira ELB, de Freitas Juchneski NC, Veit HM. Electronic waste recycling. Recycling techniques. 2015;87-126.

Kaksonen AH, Boxall NJ, Gumulya Y, Khaleque HN, Morris C, Bohu T, Cheng KY, Usher KM, Lakaniemi AM. Recent progress in bio-hydrometallurgy and microbial characterization. Hydrometallurgy. 2018;(180):7-25.

Avaialble:https://doi.org/10.1016/j.hydromet.2018.06.018

Sajjad W, Zheng G, Din G, Ma X, Rafiq M, Xu W. Metals extraction from sulfide ores with microorganisms: The bioleaching technology and recent developments. Transactions of the Indian institute of metals. 2018;72(3):559-79.

Avaialble:https://doi.org/10.1007/s12666-018-1516-4

Zhao W, Li K, Wang Y, Zhang L, Cheng H, Zhou H. Influence of particle size on copper recovery from sulfide ore by the moderately thermophilic microorganisms. Metallurgical Research and Technology 2019;116(1):Article number 119. Avaialble:http://dx.doi.org/10.1051/metal/2018118

Rawlings DE, DB Johnson. The microbiology of Biomining: Development and optimization of mineral oxidizing microbial consortia. Microbiology. 2007; 153(2):315–324.

Olson GJ, Brierley JA, Brierley CL. Bioleaching review part B: Progress in bioleaching: applications of the microbial processes by the mineral industries. Appl Microbiol Biotechnol. 2003;63(3):249–257.

Romano P, Blazquez ML, Alguacil FJ, et al. Comparative study on the selective chalcopyrite bioleaching of a molybdenite concentrate with mesophilic and thermophilic bacteria. FEMS MicrobiolLett. 2001;196(1):71–75.

Barrett J, Hughes MN, Karavaiko GI, Spencer PA. Metal extraction by bacteria and oxidation of minerals. New York: Ellis Harwood; 1993.

Suzuki I. Microbial leaching of metals from sulfide minerals. Biotechnology Advances 2001;(19):119-132.

Avaialble:http://dx.doi.org/10.1016/S0734-9750(01)00053-2

Wentzel, E. Thiobacillus [Online]; 2001. Available:http://www.bsi.vt.edu/biol_4684/ Microbes/Thiobacillus.html [Accessed 17 September 2001].

Johnson DB. Importance of microbial ecology in the development of new mineral technologies. Hydrometallurgy. 2001;(59): 147-57. Avaialble:http://dx.doi.org/10.1016/S0304-386X(00)00183-3

Rawlings DE, Tributsch H, Hansford GS. Reason why Leptospirillum-like species rather than thiobacillus ferrooxidans are the dominant iron-oxidizing bacteria in many commercial processes for the bio-oxidation of pyrite and related ores. Microbiology. 1999;(145):5-13. Avaialble:http://dx.doi.org/10.1099/13500872-145-1-5

Brandl H, Microbial leaching of metals in Rehm HJ. (ed.) Biotechnology volume 10, New York: Wiley; 2001.

Avaialble:https://doi.org/10.1002/9783527620937.ch8

Ehrlich HL. Geomicrobiology, 2nd Ed. New York: Marcel Dekker; 1990. Avaialble:https://doi.org/10.4319/lo.1982.27.5.0984

Rawlings, DE. Microbially assisted dissolution of minerals and its use in the mining industry. Pure Appl. Chem. 2004;76(4):847–859.

Konishi Y, Asai S, Tokushige M. Kinetics of the bioleaching of chalcopyrite concentrate by acidophilic thermophile Acidianusbrierleyi. Biotechnology Progress. 1999;(15):681-88.

Vasan SS, Modak JM, Natarajan KA. Some recent advances in the bio-process of bauxite. International. Journal of mineral processes. 2001;(62):173-186. Avaialble:https://doi.org/10.1016/S0301-7516(00)00051-X

Porro S, Ramírez S, Reche C, Curutchet G, Alonso-Romanowski S, Donati E. Bacterial attachment, its role in bioleaching processes. Process Biochemistry 1997; 32(7):573-78. Avaialble:https://doi.org/10.1016/S0032-9592(97)00018-6

Sukla LB, Chaudhury GR, Das RP. Effect of silver ion on kinetics of biochemical leaching of chalcopyrite concentrate. Transportation Institute Mineral Metal 1990; (99):43-6.

Battaglia F, Hugues P, Cabral T, Cezac P, Garcia JL, Morin D. The mutual effect of mixed Thiobacilliand Leptospirillipopulations on pyrite bioleaching. Minerals Engineering 1998; 11: 195-205.

Sampson MI, Phillips CV, Blake II RC. Influence of the attachment of acidophilic bacteria during the oxidation of mineral sulfides. Minerals Engineering 2000; 13(4): 373- 89. https://doi.org/10.1016/S0892-6875(00)00020-0

Clark DA, Norris PR. Oxidation of mineral sulphides by thermophilic microorganism. Minerals Engineering 1996; (9): 1119-25. https://doi.org/10.1016/0892-6875(96)00106-9

Yahya A, Johnson DB. Bioleaching of pyrite at low pH and low redox potentials by novel mesophilic gram-positive bacteria. Hydrometallurgy 2002;(63):181-188. http://dx.doi.org/10.1016/S0304-386X(01)00224-9

Konishi Y, Tokushiko M, Asai S, Susuki T. Copper reovery from chalcopyrite concentrate by acidophilic thermophile Acidianusbrierleyiin batch and continous-flow stirred tank reactor. Hydrometallurgy 2001;(59):271-82.

Gericke M, Pinches A, Van Rooyen JV. Bioleaching of a chalcopyrite concentrate using anextremely thermophilic culture. International Journal of Mineral Processing 2001;(62):243-55. Avaialble:https://doi.org/10.1016/S0301-7516(00)00056-9

Venkatesa Prabhu Sundramurthy, Baskar Rajoo, Natesan Rajendran Srinivasan, Rajan Kavitha. Bioleaching of Zn from sphalerite using Leptospirillum ferriphilum isolate: effect of temperature and kinetic aspects. Appl Biol Chem. 2020;63:44. Avaialble:https://doi.org/10.1186/s13765-020-00528-8

Li Q, Zhu J, Li S, Zhang R, Xiao T, Demergasso CS, Galleguillos PA. Interactions between cells of Sulfobacillus Thermosulfidooxidans and Leptospirillum Ferriphilum during pyrite bioleaching. frontiers in microbiology. 2020;11:111.

Zhang R, Xia J, Peng J, Zhang Q, Zhang C, Nie Z, Qiu G. A new strain leptospirillum ferriphilum YTW315 for bioleaching of metal sulfides ores. Transactions of Nonferrous Metals Society of China, 2010a;20(1):135, 41.

Tuovinen OH. Biological fundaments of minerals of mineral leaching processes, in Ehrlich, H. L. and Brierley, C.L. Microbial Mineral Recovery. New York: Mc Graw-Hill; 1990.

Haddadin J, Dagot C, Fick M. Models of bacterial leaching. Enzyme and Microbial Technology 1995;17(4):290-305.

Available:https://doi.org/10.1016/0141-0229(94)00032-8

Nemati M, Harrison STL, Hansford GS, Webb C. Biological oxidation of ferrous sulphate by thiobacillus ferrooxidans: A Review on the kinetic aspects. Biochemical Engineering Journal. 1998;(1):171-90.

Available:https://doi.org/10.1016/S1369-703X(98)00006-0

Schippers A, Sand W. Bacterial leaching of metal sulfides proceeds by two indirect mechanisms via thiosulfate or via poly-sulfides and sulfur. Applied and Environmental Microbiology. 1999;(65): 319-21.

Available:http://dx.doi.org/10.1128/AEM.65.1.319-321.1999

Sand W, Gehrke T, Jozsa PG, Schippers A. Biochemistry of bacterial leaching direct and indirect bioleaching. Hydrometallurgy 2001;(59):159-75. Available:https://doi.org/10.1016/S0304-386X(00)00180-8

Tributsch H. Direct versus indirect bioleaching. Hydrometallurgy. 2001;(59): 177-185.

Available:https://doi.org/10.1016/S0304-386X(00)00181-X

Rojas-Chapana JA, Bärtels CC, Pohlmann L, Tributsch, H. Co-operative and chemo-taxis of thiobacilli studied with spherical sulphur/sulphide substrates. Process Biochemistry. 1998;(33):239-48.

Available:https://doi.org/10.1016/S0032-9592(97)00059-9

Blight K, Ralph DE, Thurgate S. Pyrite surfaces after bio-leaching: a mechanism for bio-oxidation. Hydrometallurgy. 2000; (58):227-37. Available:http://dx.doi.org/10.1016/S0304-386X(00)00136-5

Siddiqui MH, Kumar A, Kesari KK, Arif JM. Biomining-A useful approach toward metal extraction. American-Eurasian Journal of Agronomy 2009;2(2):84-8.

Brierley CL. How will biomining be applied in future? Transaction of Nonferrous Metals Society of China. 2008;(18):1302-10. Available:https://doi.org/10.1016/S1003-6326(09)60002-9

Brierley CL, Brierley JA. Bio heap processes operational requirements and techniques. Littleton; Colorado: Society of Mining Engineers. 1999;17-27.

Mahmoud A, Cézac P, Hoadley AFA, Contamine F, D’Huhues P. A review of sulfide minerals microbially assisted leaching in stirred tank reactors. International Biodeterioration and Biodegradation. 2017;(119):118-46.

Available:https://doi.org/10.1016/j.ibiod.2016.09.015

Haque N, Norgate T. The greenhouse gas footprint of in-situ leaching of uranium, gold and copper in Australia. Journal of cleaner production. 2014;(84):382-390. Available:https://doi.org/10.1016/j.jclepro.2013.09.033

Barlett RW. Solution mining: Leaching and fluid recovery of materials. The Netherlands: Gordon and Breach Science Publishers; 1992.

Hong Y, Valix M. Bioleaching of electronic waste using acidophilic sulfur oxidizing bacteria. Journal of cleaner production. 2014;(65):465-72. Available:https://doi.org/10.1016/j.jclepro.2013.08.043

Lambert F, Gaydardzhiev S, Léonard G, Lewis G, Bareel PF, Bastin D. Copper Leaching From Waste Electric Cables by Bio-hydrometallurgy. Minerals Engineering 2015;(76):38-46. Available:http://dx.doi.org/10.1016/j.mineng.2014.12.029

Dorado AD, Solé M, Lao C, Alfonso P, Gamisans X. Effect of pH and Fe (III) Ions on chalcopyrite bioleaching by an adapted consortium from biogas sweetening. Minerals Engineering. 2012;(39):36-8.

Available:http://dx.doi.org/10.1016/j.mineng.2012.06.009

Liang G, Tang K, Liu W, Zhou Q. Optimizing mixed culture of two acidophiles to ımprove copper recovery from printed circuit boards (PCBs). Journal of Hazardous Materials. 2013;(250-251): 238-45. Available:https://doi.org/10.1016/j.jhazmat.2013.01.077

Mishra D, Kim DJ, Ralph DE, Ahn JG, Rhee YH. Bioleaching of metals from spent lithium ion secondary batteries using acidithiobacillus ferrooxidans. Waste management. 2008;28(2):333-38.

Available:http://dx.doi.org/10.1016/j.wasman.2007.01.010

Mousavi SM, Yaghmaei S, Vossoughi M, Roostaazad R, Jafari A, Ebrahimi M, Chabok OH, Turunen I. The Effects of Fe (II) and Fe (III) and initial pH on microbial leaching of low-grade sphalerite ore in a column reactor. Bio-resource technology 2008;99(8):2840-45. Available:https://doi.org/10.1016/j.biortech.2007.06.009

Xiang Y, Wu P, Zhu N, Zhang T, Liu W, Wu J, Li P. Bioleaching of copper from waste printed circuit boards by bacterial consortium enriched from acid mine drainage. Journal of hazardous materials 2010;184(1-3):812-18. Available:https://doi.org/10.1016/j.jhazmat.2010.08.113

Yang T, Xu Z, Wen J, Yang L. Factors influencing bioleaching copper from waste printed circuit boards by acidithiobacillus ferrooxidans. Hydrometallurgy 2009;97(1-2):29–32. Available:http://dx.doi.org/10.1016/j.hydromet.2008.12.011

Vilcáez J, Suto K, Inoue C. Bioleaching of chalcopyrite with thermophiles: Temperature-PH-ORP dependence. International Journal of Mineral Processing 2008;88(1-2):37-44. Available:http://dx.doi.org/10.1016/j.minpro.2008.06.002

Zhao H, Wang J, Yang C, Hu M, Gan X, Tao L, Qin W, Qiu G. Effect of redox potential on bioleaching of chalcopyrite by moderately thermophilic bacteria: An Emphasis on Solution Compositions. Hydrometallurgy. 2015;(151):141-50. Available:http://dx.doi.org/10.1016%2Fj.hydromet.2014.11.009

Giebner F, Eisen S, Schlömann M, Scophf S. Measurements of dissolved oxygen in bioleaching reactors by optode application. Hydrometallurgy. 2016;(168):64-8. Available:https://doi.org/10.1016/j.hydromet 08.001

Mazuelos A, García-Tinajero CJ, Romero R, Iglesias N, Carranza F. Oxygen solubility in copper bioleaching solutions. Hydrometallurgy. 2017;(167):1-7. Available:https://doi.org/10.1016/j.hydromet.2016.10.023

Thurston RS, Mandernack KW, Shanks WC. Laboratory chalcopyrite oxidation by acidithiobacillus ferrooxidans: oxygen and sulfur isotope fractionation. Chemical Geology 2010;269(3-4):252-61.

Available:http://dx.doi.org/10.1016/j.chemgeo.2009.10.001

Jafari M, Abdollahi H, Shafaei SZ, Gharabaghi M, Jafari H, Akcil A, Panda S. Acidophilic bioleaching: A review on the process and effect of organic inorganic reagents and materials on its efficiency. Mineral processing and extractive metallurgy review. 2019;40(2):87-107. Available:http://dx.doi.org/10.1080/08827508.2018.1481063

Gu T, Rastegar SO, Mousavi SM, Li M, Zhou M. Advances in bioleaching for recovery of metals and bioremediation of fuel ash and sewage sludge. Bio - resource Technology. 2018;(261):428-40.

Available:https://doi.org/10.1016/j.biortech.2018.04.033

Esquivel-Rios I, Ramirez-Vargas R, Hernandez-Martinez GR, Vital-Jacome M, Ordaz A, Thalasso F. A microrespirometric method for the determination of stoichiometric and kinetic parameters of heterotrophic and autotrophic cultures. Biochemical Engineering Journal. 2014;(83):70-8. Available:http://dx.doi.org/10.1016/j.bej.2013.12.006

Meruane G, Vargas T. Bacterial oxidation of ferrous iron by acidithiobacillus ferrooxidans in the pH range 2.5-7.0. Hydrometallurgy. 2003;71(1- 2):149-58. Available:https://repositorio.uchile.cl/handle/2250/124647

Owen JH, Laybourn-Parry J. Factors influencing respiratory measurements using oxygen electrodes and cartesian diver micro respirometry. New Phytologist 1987;106(1):51-7. Available:https://www.jstor.org/stable/2434685

Fu B, Zhou H, Zhang R, Qiu G, Bioleaching of chalcopyrite by pure and mixed cultures of acidithiobacillus Spp. and Leptospirillumferriphilum. International bio-deterioration and bio- degradation. 2008;62(2):109-15.

Available:http://dx.doi.org/10.1016/j.ibiod.2007.06.018

Hallmann R, Friedrich A, Koops HP, Pommerening RA, Rohde K, Zenneck C, Sand W. Physiological characteristics of thiobacillus ferrooxidans and leptospirillum ferrooxidans and physicochemical factors influence microbial metal leaching. Geomicrobiology Journal. 1992;10(3-4):193-206. Available:https://doi.org/10.1080/01490459209377920

Klink C, Eisen S, Daus B, Heim J, Schlömann M, Schopf S. Investigation of acidithiobacillus ferrooxidans in pure and mixed-species culture for bioleaching of theisen sludge from former copper smelting. Journal of applied microbiology 2016;120(6):1520-30. Available:https://doi.org/10.1111/jam.13142

Bas AD, Deveci H, Yazici EY. Bioleaching of copper from Low Grade Scrap TV circuit boards using mesophilic bacteria. Hydrometallurgy. 2013;(138):65-70. Available:https://doi.org/10.1016/j.hydromet.2013.06.015

Third KA, Cord-Ruwisch R, Watling HR. The role of iron-oxidizing bacteria in stimulation or inhibition of chalcopyrite bio-leaching. Hydrometallurgy. 2000;57(3): 225-33. Available:https://doi.org/10.1016/S0304-386X(00)00115-8

Willner J, Fornalczyk J. Extraction of metals from electronic waste by bacterial Leaching. Environment Protection Engineering. 2013;39(1):197-208. Available:http://dx.doi.org/10.5277/EPE130115

Benzal E, Cano A, Solé M, Lao-Luque C, Gamisans X, Dorado AD. Copper Recovery from PCBs by Acidithiobacillus Ferrooxidans: Toxicity of Bioleached Metals on Biological Activity. Waste and Biomass Valorization. 2020a;(11): 5483-92. Available:https://link.springer.com/article/10.1007/s12649-020-01036-y

Cho KS, Ryu HW, Choi HM. Toxicity evaluation of complex metal mixtures using reduced metal concentrations: application to ıron oxidation by acidithiobacillus ferrooxidans. Journal of microbiology and biotechnology. 2008;18(7):1298-307.

Das A, Modak JM, Natarajan KA. Studies on multi-metal ıon tolerance of thiobacillus ferrooxidans. Minerals Engineering. 1997;10(7):743-9. Available:https://doi.org/10.1016/S0892-6875(97)00052-6

David DJ, Pradhan D, Das T. Evaluation of iron oxidation rate of Acidithiobacillus ferrooxidans in presence of heavy metal ions. Mineral processing and extractive metallurgy. 2008;(117):56-61.

Available:http://dx.doi.org/10.1179/174328508X272326

Yang Y, Chen S, Li S, Chen M, Chen H, Liu B. Bioleaching waste printed circuit boards by acidithiobacillus ferrooxidans and Its kinetics aspect. Journal of biotechnology. 2014;(173):24-30.

Zhu N, Xiang Y, Zhang T, Wu P, Dang Z, Li P, Wu J. Bioleaching of metal concentrates of waste printed circuit boards by mixed culture of acidophilic bacteria. Journal of Hazardous Materials 2011;192(2):614-9. Available:https://doi.org/10.1016/j.jhazmat.2011.05.062

Benzal E, Solé M, Lao C, Gamisans X, Dorado AD. Elemental Copper Recovery from E- Wastes Mediated with a Two-Step Bioleaching Process. Waste and Biomass Valorization. 2020b;(11):5457-65.

Available:https://link.springer.com/article/10.1007/s12649-020-01040-2

Fomchenko NV, Muravyov MI. Two-Step bio- hydrometallurgical technology for modernization of processing of sulfidic Copper-Zinc products. Hydrometallurgy 2017;(174):116-22. Available:https://doi.org/10.1016/j.hydromet.2017.10.005

Heydarian A, Mousavi SM, Vakilchap F, Baniasadi M. Application of a mixed culture of adapted acidophilic bacteria in two-step bioleaching of spent lithium-ion laptop batteries. Journal of Power Sources. 2018; (378):19-30. Available:https://doi.org/10.1016/j.jpowsour.2017.12.009

Wang L, Li A, Li Y, Sun X, Li J, Shen J, Han W, Wang L. A novel approach for recovery of Metals from waste printed circuit boards and simultaneous removal of iron from steel pickling waste liquor by two-step hydrometallurgical Method. Waste management. 2017;(71):411-19. Available:http://dx.doi.org/10.1016/j.wasman.2017.10.002

Chen S, Yang Y, Liu C, Dong F, Liu B. Column Bioleaching Copper and Its Kinetics of Waste Printed Circuit Boards (WPCBs) by Acidithiobacillus Ferrooxidans. Chemosphere. 2015;(141): 162-68. Available:https://doi.org/10.1016/j.chemosphere.2015.06.082

Ghorbani Y, Franzidis JP, Petersen J. Heap leaching technology – current state, Innovations, and future directions. Mineral processing and extractive metallurgy review. 2015;37(2):73-119.

Available:https://doi.org/10.1080/08827508.2015.1115990

Ilyas S, Ruan C, Bhatti HN, Ghauri MA, Anwar MA. Column bioleaching of metals from electronic scrap. Hydrometallurgy 2010;101(3-4):135-40. Available:http://dx.doi.org/10.1016/j.hydromet.2009.12.007

Jujun R, Jie Z, Jian H, Zhang J. A novel designed bioreactor for recovering precious metals from waste printed circuit boards. Scientific Reports. 2015;5:13481. Available:https://doi.org/10.1038%2Fsrep13481

Qiu G, Li Q, Yu R, Sun Z, Liu Y, Chen M, Yin H, Zhang Y, Liang Y, Xu L, Sun L, Liu X. Column bioleaching of uranium embedded in granite porphyry by a mesophilic acidophilic consortium. Bio-resource Technology. 2011;102(7):4697-702. Available:https://doi.org/10.1016/j.biortech.2011.01.038

Adhapure NN, Dhakephalkar PK, Dhakephalkar AP, Tembhurkar VR, Rajgure AV, Deshmukh AM. Use of Large Pieces of Printed Circuit Boards for bioleaching to avoid precipitate contamination problem and to simplify overall metal recovery methods. 2014;181-186.

Shah MB, Tipre DR, Purohit MS, Dave SR. Development of two-step process for enhanced biorecovery of Cu, Zn, and Ni from computer printed circuit boards. Journal of bioscience and bioengineering. 2015;120(2):167-173.

Arshadi M, Mousavi SM. Statistical evaluation of bioleaching of mobile phone and computer waste PCBs: A comparative study. Advanced Materials Research. 2015;1104(Ptcc 1656):87-89

Bizzo WA, Figueiredo RA, De Andrade VF. Characterization of printed circuit boards for metal and energy recovery after milling and mechanical Separation. 2014;7(6): 4555 -4566.

Dong Y, Lin H, Fu KB, Xu XF, Zhou SS. Bioleaching of Two Different Types of Chalcopyrite by Acidithiobacillus Ferrooxidans. International Journal of Minerals, Metallurgy and Materials; (2013b);20(2):119-124.

Madrigal-Arias JE, Argumedo-Delira R, Alarcón A, Mendoza-López MR, García- Barradas O, Cruz-Sánchez JS, Ferrera-Cerrato R, Jiménez-Fernández M. Bioleaching of gold, copper and nickel from waste cellular phone and computer goldfinger motherboards by two aspergillus niger strains. Brazilian Journal of microbiology. 2015;46(3):707-713.

Wang J, Zhu S, Zhang YS, Zhao HB, Hu MH, Yang CR, Qin WQ, Qiu GZ. Bioleaching of low-grade sopper Sulfide ores by acidithiobacillus ferrooxidans and acidithiobacillus thiooxidans. Journal of central south university. 2014;21(2):728- 734.99.

Isildar A, van de Vossenberg, J, Rene ER, van Hullebusch ED, Lens PNL. Two- step bioleaching of copper and gold from discarded printed circuit boards (PCB). 2016;( 57):149- 157.

Ilyas S, Lee JC, Kim BS. Bio-removal of heavy Metals from recycling industry electronic waste by a consortium of moderate thermophiles: Process development and optimization. Journal of cleaner production. 2014;(70):194-202.

Available:http://dx.doi.org/10.1016%2Fj.jclepro.2014.02.019

Rodrigues MLM, Leão VA, Gomes O, Lambert F, Bastin D, Gaydardzhiev S. Copper Extraction from Coarsely Ground Printed Circuit Boards Using Moderate Thermophilic Bacteria in a Rotating-Drum Reactor, Waste Management. 2015;41: 148-158

Silva RA, Park J, Lee E, Park J, Choi SQ, Kim H. Influence of bacterial adhesion on copper extraction from printed circuit boards, separation and purification technology. 2015;143:169-76.

Vakylabad AB, Schaffie M, Ranjbar M, Manafi Z, Darezereshki E. Bio-processing of copper from combined smelter dust and flotation concentrate: A Comparative study on the stirred tank and airlift reactors, Journal of hazardous materials. 2012; 242:197-206.

Shipei Wang, Ting Liu, Xiao Xiao and Shenglian Luo. Advances in microbial remediation for heavy metal treatment: A mini review, Journal of Leather Science and Engineering. 2021;3:1.

Available:https://doi.org/10.1186/s42825-020-00042-z

Hu K, Xu D, Chen Y. An assessment of sulfate reducing bacteria on treating sulfate-rich metal-laden wastewater from electroplating plant. J Hazard Mater; 2020. Available:https://doi.org/10.1016/122376.

Dhami NK, Quirin ME, Mukherjee A. Carbonate biomineralization and heavy metal remediation by calcifying fungi isolated from karstic caves. Ecol Eng. 2017;103:106–17.

Orescanin V, Durgo K, Mikelic IL, Halkijevic I, Kuspilic M. Toxicity assessment of untreated/ treated electroplating sludge using human and plant bioassay. J Environ Sci Health A. 2018;53:925–30.

Scarazzato T, Panossian Z, Tenorio J, Perez-Herranz V, Espinosa D. A review of cleaner production in electroplating industries using electrodialysis. J Clean Prod. 2017;168:1590–602.

Zhou C, Ge S, Yu H, Zhang T, Cheng H, Sun Q, Xiao R. Environmental risk assessment of pyrometallurgical residues derived from electroplating and pickling sludges. J Clean Prod. 2018;177:699–707.

Dunbart WS. Biotechnology and the mine of tomorrow. Trends Biotechnol. 2017; 35:79-89.

Dhal B, Thatoi HN, Das NN, Pandey BD. Environmental quality of the Boula- Nuasahi chromite mine area in India. Mine Water Environ. 2011;30:191–6.

Nordstrom DK, Blowes DW, Ptacek CJ. Hydro-geochemistry and microbiology of mine drainage: An update. Appl Geochem. 2015;57:3–16.

Song Y, Wang H, Yang J, Zhou L. Evaluation and optimization of a new microbial enhancement plug-flow ditch system for the pretreatment of acid mine drainage: Semi-pilot test. RSC Adv. 2018; 8(2):1039–46.

Nielsen G, Hatam I, Abuan KA, Janin A, Coudert L, Blais JF, Mercier G, Baldwin SA. Semi-passive in-situ pilot scale bioreactor successfully removed sulfate and metals from mine impacted water under subarctic climatic conditions. Water Res. 2018;140:268–79.

EFSA Panel on Contaminants in the Food Chain (CONTAM). Scientific opinion on the risks to public health related to the presence of chromium in food and drinking water. EFSA J. 2014;12(3):3595.

Sharma S, Malaviya P. Bioremediation of tannery wastewater by chromium resistant novel fungal consortium. Ecol Eng. 2016; 91:419–25.

Fan M, Liu Z, Nan L, Wang E, Chen W, Lin Y, Wei G. Isolation, characterization, and selection of heavy metal-resistant and plant growth promoting endophytic bacteria from root nodules of Robinia pseudoacacia in a Pb/Zn mining area. Microbiol Res. 2018;217:51–9.

Acevedo, F. The use of bioreactors in biomining processes. EJB Electronic J. Biotechnol. 2000;3(3):1–11.

Rossi G. The design of bioreactors. Hydrometallurgy. 2001;59:217–231.

Pinches A, Chapman JT, Teriele WAM, Van Staden M. The performance of bacterial leach reactors for the pre-oxidation of refractory gold-bearing sulphide concentrates. Biohydrometallurgy: Proceedings of the International Biohydrometallurgy Symposium. Norris, P. and Kelly, D.P. (eds.). Kew, Antony Rowe Limited. 1987;329–344.